Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 92(1): 21-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158403

RESUMO

The Praja family is an E3 ubiquitin ligase, promoting polyubiquitination and subsequent degradation of substrates. It comprises two paralogs, praja1 and praja2. Prior research suggests these paralogs have undergone functional divergence, with examples, such as their distinct roles in neurite outgrowth. However, the specific evolutionary trajectories of each paralog remain largely unexplored preventing mechanistic understanding of functional differences between paralogs. Here, we investigated the phylogeny and divergence of the vertebrate Praja family through molecular evolutionary analysis. Phylogenetic examination of the vertebrate praja revealed that praja1 and praja2 originated from the common ancestor of placentals via gene duplication, with praja1 evolving at twice the rate of praja2 shortly after the duplication. Moreover, a unique evolutionary trajectory for praja1 relative to other vertebrate Praja was indicated, as evidenced by principal component analysis on GC content, codon usage frequency, and amino acid composition. Subsequent motif/domain comparison revealed conserved N terminus and C terminus in praja1 and praja2, together with praja1-specific motifs, including nuclear localization signal and Ala-Gly-Ser repeats. The nuclear localization signal was demonstrated to be functional in human neuroblastoma SH-SY5Y cells using deletion mutant, while praja2 was exclusively expressed in the nucleus. These discoveries contribute to a more comprehensive understanding of the Praja family's phylogeny and suggest a functional divergence between praja1 and praja2. Specifically, the shift of praja1 into the nucleus implies the degradation of novel substrates located in the nucleus as an evolutionary consequence.


Assuntos
Neuroblastoma , Sinais de Localização Nuclear , Animais , Humanos , Filogenia , Sinais de Localização Nuclear/genética , Vertebrados/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Evolução Molecular
2.
Ultrason Sonochem ; 16(1): 155-62, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18722800

RESUMO

The sonochemical decomposition of a low concentration of butyric acid was performed in an aqueous solution by use of 200 kHz ultrasound to discuss the reaction kinetics and molecular behavior during cavitation. Taking into account a Langmuir-type adsorption model, we propose a heterogeneous reaction kinetics model, which is based on the local reaction zone at the interface region of the cavitation bubbles, where the adsorption and desorption of butyric acid molecules from the bulk solution occur during bubble oscillation and then the existing molecules inside the local reaction zone are finally decomposed. To confirm our proposed kinetics model, the rates of decomposition were investigated as a function of the initial concentration of butyric acids in the different pH solutions. It was confirmed that our model could be reasonably applied to explain the obtained results and the pseudo rate constant (k) and the equilibrium constant (K) were able to be calculated: k is 8.0 microM min(-1) (pH 2) and 3.5 microM min(-1) (pH 10), and K is 5.7 x 10(-3) microM(-1) (pH 2) and 8.0 x 10(-3) microM(-1) (pH 10), respectively. By the analysis of the obtained K values, it was clear that the ionized organic acid molecules are relatively difficult to accumulate at the reaction zone, because of their lower hydrophobicity compared with that of the neutral ones. The results obtained in the sonochemical decomposition of benzoic acid were also able to be analyzed with the proposed kinetics model. In addition, we proposed an opinion toward the interpretation of a Langmuir-type adsorption model which has often been applied to explain heterogeneous reaction systems.

3.
Chemosphere ; 71(1): 36-42, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18166211

RESUMO

Two types of sonicators were used for the sonochemical decomposition of methyl orange (MO) in the presence and absence of carbon tetrachloride (CCl4): One is a 45kHz ultrasonic cleaning bath (a low intensity sonicator) and the other is a 200kHz ultrasonic reactor (a high intensity sonicator). It was clearly confirmed that the rates of the sonochemical decomposition of MO increased with increasing the concentration of CCl4 in both sonicators. The enhancement effect of CCl4 was much higher in the high intensity sonicator than in the low intensity one: by the addition of 100ppm of CCl4, the decomposition ratio of MO with the high intensity sonicator became 41 times larger, while that with the low intensity sonicator became 4.8 times larger. Based on the obtained results, it was suggested that the formed cavitation phenomenon was different between sonicators. It was also suggested that the sonochemical decomposition of MO in the presence of CCl4 would be useful to evaluate the sonochemical efficiency, because the rate of MO decomposition can be effectively enhanced by the sonolysis of CCl4.


Assuntos
Compostos Azo/química , Tetracloreto de Carbono/química , Ultrassom , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA